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The Java programming language is achieving greater acceptance in
high-end embedded systems such as cellphones and PDAs. However, low-
end embedded platforms, such as DSPs or microcontrollers, often have no
more than a C compiler, and this prevents Java applications from being run
on such systems. Applications must either be re-written in C, or a Java Vir-
tual Machine must be ported to each such system.

This paper discusses a compiler that converts portable Java bytecode to
C code, allowing applications written in Java to run on embedded systems
which may lack a Java Virtual Machine. This is also applicable to bare-
bones embedded systems running without an operating system. We briefly
describe code generation strategies, run-time data structures and optimiza-
tion algorithms used to generate efficient C code. The code size and execu-
tion time of the C code were compared with interpreted Java, just-in-time
compiled Java, and executables generated directly from Java. 

On an average, we found the size of the generated stand-alone execut-
able to be over 25 times smaller than that generated by a cutting-edge Java-
to-native-code compiler, while providing performance comparable to the
best of various Java implementation strategies.
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1. Introduction

The Java programming language is achieving greater acceptance in high-end

embedded systems such as mobile phones and PDAs. However, low-end embed-

ded platforms, such as DSPs or microcontrollers, often have no more than a C

compiler, and this prevents Java applications from being run on such systems.

Applications must either be re-written in C, or a Java Virtual Machine must be

ported to each such system.

This document discusses a compiler that converts portable Java bytecode to C

code, allowing applications written in Java to run on embedded systems which

may lack a Java Virtual Machine. This is also applicable to bare-bones embedded

systems running without an operating system. We briefly describe code generation

strategies, run-time data structures and optimization algorithms used to generate

efficient C code. The code size and execution time of the C code were compared

with interpreted Java, just-in-time compiled Java, and executables generated

directly from Java. 

On an average, we found the size of the generated stand-alone executable to be

over 25 times smaller than that generated by a cutting-edge Java-to-native-code

compiler, while providing performance comparable to the best of various Java

implementation strategies.
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1.1  Embedded Systems

An embedded system is a special-purpose computer system built into a larger

device. Embedded systems are typically required to meet requirements that are

very different from the requirements of general-purpose personal computers. 

Two major areas of difference are cost and power consumption. Many embed-

ded systems are produced in the range of tens of thousands to millions of units,

making cost reduction a major concern. Embedded systems often use a (relatively)

slow processor and small memory size to minimize costs. The system architecture

is often intentionally simplified to lower costs. For example, embedded systems

often use peripherals controlled by synchronous serial interfaces, which are ten to

hundreds of times slower than comparable peripherals used in PCs. 

In addition, programs on an embedded system are often required to satisfy cer-

tain real-time constraints. Embedded systems also often lack basic components

that are ubiquitous in desktops, such as disk drives, operating systems, keyboards

and display screens. 

There are a host of different microprocessor architectures used in embedded

designs. This in contrast to the desktop computer market, which is limited to just a

few competing architectures, chiefly Intel's x86, AMD’s Athlon/Duron and the

Apple/Motorola/IBM PowerPC, used in the Apple Macintosh. 
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Although early embedded systems were programmed in assembly language,

the focus soon shifted to C, which allowed faster programming and easier debug-

ging. The move towards higher-level languages allows more functionality to be

developed in same amount of developer time. The trend towards programming in

higher-level languages has continued, with C++ compilers being made available

for some systems. Java is also gaining popularity amongst high-end embedded sys-

tems such as PDAs and cellphones.

1.2  C

The C programming language [1] was developed at Bell Laboratories in 1972

by Dennis Ritchie. Its power and flexibility became apparent soon after its inven-

tion, and caused the Unix operating system to be almost immediately re-written

from assembly language to C (except for a few lines of “bootstrap” assembly

code). During the rest of the 1970's, C spread to many colleges and universities

because of it's close ties to Unix and the availability of C compilers. Soon, many

different organizations began using their own C versions, causing compatibility

problems. In 1983, the American National Standards Institute (ANSI) responded to

this by forming a committee to establish a standard definition of C which became

known as ANSI Standard C [1]. More functionality was added to this by the GNU

project [2], and GNU C exists as a superset of ANSI C.
3



C is a powerful, flexible language that provides fast program execution and

imposes few constraints on the programmer. It allows low level access to informa-

tion and commands while retaining the portability and syntax of a high level lan-

guage. These qualities make it a useful language for systems programming as well

as general purpose programs.

C’s flexibility stems from the multiple approaches available to the programmer

to accomplish the same tasks. It contains richly expressive constructs such as bit-

wise operators, pointer manipulations, multi-dimensional arrays and function

pointers. C imposes few constraints on the programmer. The main area this shows

up is in C's lack of type checking. This can be a powerful advantage to an experi-

enced programmer but a dangerous disadvantage because of the lack of safety fea-

tures.

Another strong point of C is its modularity. Sections of object code can be

stored in libraries for re-use in future programs. This concept of modularity also

helps with C's portability and execution speed. The core C language excludes

many features included in the core of other languages. These functions are instead

stored in the C Standard Library where they can be called on as needed. An exam-

ple of this is C's lack of built in I/O capabilities. I/O functions tend to slow down

program execution, and they are platform-dependent when optimally imple-
4



mented. For these reasons, they are stored in a separate library, and are included

only when necessary. 

However, there have been other advances in programming languages since the

invention of C. Many powerful concepts such as threads, object-oriented program-

ming, type-polymorphism and automatic garbage collection are not fully or

directly supported in C. In addition, even strict standards-compliant C code is not

fully portable. 

Despite these drawbacks, its popularity, flexibility and ease of low-level access

have made C the current language of choice for a variety of applications, including

operating systems and embedded applications. 

1.3  Java

The Java programming language [3] was originally called Oak, and was

designed for use in embedded consumer-electronic applications by James Gosling.

After several years of experience with the language and significant modifications,

it was retargeted to the Internet, renamed, and substantially revised to be the lan-

guage now called Java. 

The Java programming language is a strictly typed, general-purpose, concur-

rent, class-based, object-oriented programming language, specifically designed to
5



have as few implementation dependencies as possible. It allows application devel-

opers to write a program once and then be able to run it everywhere on the Internet.

Java was designed to be a system that could be programmed easily without a

lot of esoteric training, and which leveraged standard practices. One of the most

popular programming languages is C, and many programmers doing object-ori-

ented programming used C++ when Java was introduced. So even though the Java

designers found that C++ was unsuitable, they designed Java as closely to C++ as

possible in order to make the system more comprehensible [27].

Java omits many features of C++ that the designers of Java considered to be

rarely used, poorly understood or confusing [27]. These omitted features primarily

consist of operator overloading (although the Java language does have method

overloading), multiple inheritance, extensive automatic coercions and pointer

arithmetic.

Java also has automatic garbage collection, thereby simplifying the task of

Java programming but making the system implementation somewhat more com-

plicated. A common source of complexity (and therefore errors) in many C and

C++ applications is storage management: the allocation and freeing of memory. By

virtue of having automatic garbage collection (periodic freeing of memory not

being referenced) the Java language not only makes the programming task easier,

it also cuts down on coding errors1.
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There are two conventional approaches to executing programs: compilation

and interpretation. The standard Java implementation uses both. In compilation a

compiler converts the program’s source to into machine code that can be directly

executed on the computer. This is the approach taken by C [1], C++ [34][35] and

Pascal [36]. In an interpreted language, an interpreter parses and executes the

source code in a line-by-line fashion. This is the approach taken by Basic, Visual

Basic and most shell scripts.

Compiled programs often run faster because they use machine code instruc-

tions that can directly run on a computer. Interpreted programs are run on top of

the interpreting program are hence much slower. However, an interpreter acts like

a buffer between the program and the computer and shields the computer from

erroneous instructions that could affect the operation of the computer. 

To enable platform-independence and enforce security policies, Java programs

are compiled into an interpretable platform-independent form. This compiled form

is called byte code. Bytecode and other information for each class is stored in a

class file, which can be loaded and executed in an interpreter called a Java Virtual

1. This assertion is made in [27], but we found that it is indeed verified by our experience. All 8000 
lines of Java code in the Java-to-C compiler were debugged with print statements alone. Java’s 
built-in exception mechanism and lack of pointer arithmetic obviated the need for using a com-
plex Java debugger. By contrast, the 500 lines of runtime C code required debugging with gdb 
for errors, which were primarily related to memory allocation, memory alignment and pointers 
to memory locations. Java’s automatic memory management and lack of pointer arithmetic 
ensures that none of these classes of bugs can occur in a Java program.
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Machine (JVM). This enables a Java program to be executed on any platform

(architecture and operating system) that supports a JVM. 

A virtual machine is any machine written in software, that provides an abstract

layer to applications. In a layered application the virtual machine acts as the lowest

layer, providing abstraction over the native environment. If an application is be

ported to another environment only the virtual machine needs to be re-imple-

mented. The application layers written above it remain unchanged, as they use the

same abstract interface to the virtual machine.
8



2. Related Work

Over time, a number of implementations for Java have been explored. This

section discusses various approaches to running Java code on a variety of com-

puter systems.

2.1  JVM-based execution

Full-featured Java Virtual Machines are the standard Java implementation [4].

A Java compiler converts each Java class to a class file. The JVM loads and runs

bytecode instructions from class files. Examples of such implementations are the

standard Java Virtual Machine from Sun MicroSystems [28], the Jikes Research

Virtual Machine [29] [30] developed at IBM and the Kaffe Virtual Machine [31].

All of these support the Java Virtual Machine Specifications [4] and support all

Java features and a full Java class library.

Early JVMs were simple interpreters, and simply executed each bytecode

instruction sequentially. This involved a computational overhead, since the code

was not running directly on the microprocessor. Current JVMs improve execution

efficiency by employing just-in-time (JIT) compilation [32][33]. JIT compilation

involves converting the bytecode for each method to machine code immediately

prior to its first execution. This removes the interpretation overhead and results in

execution speedup, at the cost of having a more complex JVM. However, a JIT
9



approach precludes global or expensive optimizations, and is restricted to perform-

ing local “peephole” optimizations.

2.2  Stripped-Down Java 

A full-featured Java Virtual Machine and class library is appropriate for desk-

top systems, but constraints on code size, execution speed and power make this

approach inappropriate for many embedded systems. The more stringent resource

requirements of embedded systems can often be met by:

• Supporting a subset of Java, and excluding features such as dynamic loading, 

reflection, proxies, multithreading and certain data types that may not be 

required for the target application(s).

• Using a minimal class library instead of the complex and large Java class 

library. The Java class library provides a large amount of functionality to the 

programmer for ease of development, but a much smaller library may be more 

appropriate for embedded systems.

This approach does not allow standard Java code to run on an embedded plat-

form. Rather, it allows code to be written in Java with a particular embedded

implementation in mind.

Sun’s KVM (K Virtual Machine) [5] is part of the Java 2 Micro Edition

(J2ME) targeted at resource-constrained and embedded systems. It does not sup-

port floating-point data types, reflection and object finalization methods, and it

places some limitations on threads. It supports a minimal class library and has a
10



code size2 of ~100KB. The small code size constraint does not allow JIT-compila-

tion. Sun’s CLDC HotSpot Virtual Machine [6] (also part of J2ME) enables JIT-

compilation, resulting in significant speedup. However, it increases the code size

to ~500KB.

WabaSoft’s Waba Virtual Machine [25] is another pruned-down Virtual

Machine that supports a strict subset of Java. It excludes long data types, double

data types, support for exceptions and threads. It provides a small specialized

library, so programs need to be written specially for Waba. The code size of a

Waba implementation is ~100KB. A successor to Waba is SuperWaba [26] which

provides more complete support while increasing code size to ~300KB.

2.3  Mixed-Mode execution

JIT-enabled JVMs cannot perform the kind of global optimizations that can be

performed by an ahead-of-time compiler. However, a statically generated execut-

able may not support the full dynamic nature of the Java language (features such as

proxies, reflection and dynamic loading). A solution to improve Java performance

is to statically convert some of the bytecode to machine code, but also have a JVM

to perform certain tasks. Part of an application may run as bytecode on the JVM,

while other parts of the application run directly as machine code.

2. Code size here is defined as the combined size of the Virtual Machine and class library.
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TurboJ [7][8] compiles certain methods into machine code, and uses special

class files called “interludes” that allow methods that have been converted into

machine code to call methods that exist as bytecode. It relies on the JVM for object

management, garbage collection, thread management and class and library load-

ing. Since it has a full JVM at hand, TurboJ meets all Java specifications.

Harissa [9][10] (originally named Salsa) is a bytecode to native code compiler

that uses C as an intermediate language. It links in a bytecode-interpreting JVM

into the generated executable to enable dynamic loading of bytecode. It does not

support current or recent Java versions.

It must be noted that the mixed-mode execution improves performance, but it

does not neccessarily reduce code size, because it still requires a JVM and class

library.

2.4  Java-to-Native Compilation

It is also possible to convert bytecode or Java source code to platform-specific

machine code. Static compilation makes extensive optimizations that cannot be

made by a just-in-time compiler, and thus generates more efficient machine code.

This neccessarily involves some loss of portability, since the generated machine

code is platform-specific. There may also be some restrictions on functionality.

However, this strategy is a useful option for embedded systems, where code effi-

ciency in terms of both performance and size may be extremely important.
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The Vortex compiler infrastructure [11] provides Cecil, C++, Modula-3 and

Java front-ends. It allows Java code to be compiled into executable form, and

serves as a test-bed for various compiler optimizations. Caffeine [12] is also a

preliminary prototype of a Java to native code compiler.

gcj [13] provides a highly sophisticated and standardized method for compil-

ing Java source code or bytecode into native executable form. It provides a com-

plete runtime environment for Java, and is a cutting-edge Java-to-Native code

compiler.

Toba [14] is a well-designed Java compiler that compiles Java to C and then

uses a platform-dependant C compiler to generate executable code. It does not sup-

port current Java versions. We build on some of the concepts described in [14] fur-

ther, implementing features and optimizations specific to embedded systems.
13



3. Statement of Problem

Is it possible to achieve a Java implementation via C that meets the low memory-

size footprint requirements of embedded applications? What is the impact of such a 

scheme on execution speed? How much of Java functionality can be supported by 

such a scheme?

We designed an elegant Java-to-C code-translation scheme, and coupled it with a 

sophisticated code pruning algorithm. We treated this an an example of a C-based 

static compilation strategy, and compared both performance and code size with 

other Java implementations. In this document, we also discuss the potential limita-

tions of such a scheme in terms of functionality, based on our experience in the 

design process.
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4. Implementation

4.1  Runtime Data Structures

The Java object model provides a rich set of features to describe object types,

methods and fields. We provide data structures that emulate this functionality

within C. This data layout strategy is a direct adaptation of the strategies used in

many virtual machines, and is similar to that described in Toba [14].

4.1.1  Naming Conventions

Java allows identifier names to be unlimited strings of unicode characters,

whereas C requires all identifiers to be ASCII characters of 63 or fewer characters.

Further, merely the name of a Java class, method or field does not uniquely iden-

tify it. A Java class is uniquely identified by its package and name. Similarly, a

Java method is uniquely described by its class and signature, since Java methods

may be overloaded within a class, or among different classes. 

To prevent two distinct Java entities from being mapped to the same C name,

we generate C names by removing characters not permitted in C identifiers, and

adding a unique hash-code prefix. This enables all methods, classes and fields to

share a global namespace.
15



The C name corresponding to a class, method or field consists of prefix charac-

ters, followed by a numeric hashcode, and then then its Java name. The name may

be sanitized (illegal characters may be removed and the resulting string may be

truncated) to make it a legal C identifier. The hashcode is generated using a robust

hashing scheme that is consistent across different runs of the compiler and across

different platforms to ensure that a Java entity always corresponds to the same C

name.

The prefix characters are required because C names cannot start with a

numeric character. We use different prefix characters for different types of named

objects. These are specified in Table 1. 

4.1.2  Data and Code Layout

Java primitive types are mapped to primitive C types of the appropriate size.

Java objects are reference types which extend java.lang.Object. Reference

types are translated into C pointer types. Each reference points to an instance

TABLE 1. Naming conventions for prefix characters.

Type of named object Prefix characters

Instance Structure corresponding to a Java class Vi

Pointer to instance structure i

Class Structure corresponding to a Java class. C

C function corresponding to non-native Java 
method

f

C function corresponding to native Java method n

Function pointer within a class structure m
16



structure in C. The instance structure contains all instance-specific information

(such as non-static fields), and a pointer to a common class structure. There is a

single class structure corresponding to each class, which contains three sub-struc-

tures: the class descriptor table, the methods table, and the class variables table. 

The class descriptor table contains information that is needed across all classes,

such as the name of the class, a pointer to the superclass etc. The major fields of

the class descriptor table are shown in Table 2.

The method table contains a table of pointers to functions that implement the

various methods of the class. The entries for methods present in the parent class

come first, followed by methods present in this class, and absent in the parent

class. The ordering of methods is maintained from class to subclass. This precise

ordering enables type polymorphism, by allowing a class to be to be treated as any

of its superclasses. This is because the entry corresponding to a given method will

occupy the same location in the class structure of all subclasses of any given class,

TABLE 2. Structure of Class Descriptor Table

char* name Character String containing the name of the 
class.

int instance_size The number of bytes in instance structures of 
this class.

void* 

superclass

Pointer to class structure of parent class.

short Array Indicates whether the class is an array.

void* (*lookup) (int) Pointer to function that resolves polymorphic 
interface method invocations at runtime.

short (*instanceOf) (void*, long) Pointer to function that resolves “instanceof” 
queries at runtime.
17



and its location will be invariant when a class structure is cast and indexed as the

class structure of a superclass.

The class variable table contains class variables, such as static fields. Note that

all non-static fields are members of the instance structure, not of the class struc-

ture.

4.1.3  Referencing Objects, Methods and Fields.

References to Java Objects are translated into pointers to the corresponding

instance structures. Method references are changed into the appropriate function

pointers, and field references become pointers to fields of the corresponding struc-

ture. 

The code below shows a sample Java class “Circle”, with an instance “c”.

Examples of C equivalents of references to members of c are illustrated in Table 3.

public class Circle implements SomeInterface {
//Field
int radius;
// Method.
int getRadius();
// Static method.
static String getType();
// Method from SomeInterface.
void move(int x, int y);
}
...
18



Circle c;

4.1.4  Arrays

Java arrays are objects, are dynamically created, and may be assigned to vari-

ables of type Object. All methods of class Object may be invoked on an array. 

An array object contains a number of variables. The number of variables may

be zero, in which case the array is said to be empty. The variables contained in an

array have no names; instead they are referenced by array access expressions that

use nonnegative integer index values. These variables are called the components of

the array. If an array has n components, n is the length of the array; the components

of the array are referenced using integer indices from 0 to n - 1, inclusive.

We treat arrays as special objects. Their class descriptors can be set at runtime,

and all arrays of a given type share the same class descriptor. As with normal

classes, the instance structure of an array contains a pointer to the class structure. 

TABLE 3. C equivalent of Java references

Reference Type Java Code C Codea

a. Hashcode prefixes to the names of C identifiers are omitted for clarity.

 field c.radius c->radius

instance method c.getRadius() c->class->getRadius(c)

Static method c.getType() c->class->getType()

Interface method c.move(x, y) c->class->lookup(9721)(c, 
x, y)
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Java allows elements of an array to be arrays. Multi-dimensional arrays are

treated as arrays of arrays. Unlike the handling of multidimensional arrays in C,

this allows non-rectangular arrays to be created. We created C functions and mac-

ros to emulate all Java functionality for array initialization, array access and array

declarations

4.2  Code Generation

The Java-to-C translation framework is written entirely in Java. It takes Java

class files as input. These contain Java bytecode, which is a stack-based low-level

description, and is not suitable for direct translation to C. For analysis of the byte-

code, we make extensive use of Soot [15][16][17], a sophisticated Java bytecode

analysis and optimization framework developed at McGill University. Soot allows

bytecode to be transformed into Jimple [18], a typed 3-address intermediate repre-

sentation designed to simplify analysis and transformation of Java bytecode. C

code is then generated based on the Jimple representation.

For each class required by the application, the compiler generates a C file con-

taining all required methods, including implicit initialization methods described in

[3] and [4]. We also generate a header file containing various declarations and type

definitions of the class structure and the instance structure. A makefile tailored to

the target system is also generated for allowing the platform-specific C compiler to

create an executable.
20



4.2.1  Interfaces

Type polymorphism arising from class-subclass relationships is easily resolved

via the structure of the method table discussed in Section 4.1.2 on page 16 because

each class (except java.lang.object) has exactly one parent. Java does not

allow multiple inheritance. However a class may implement an arbitrary number

of interfaces, as described in [3]. Calls to methods defined in interfaces are also

polymorphic in nature, i.e. there is a set of methods that are possible targets of the

method call, and there may not be a single statically known target.

Such invocations are resolved by a per-class lookup method that takes the

hashcode of the interface method called as an argument and returns a pointer to the

appropriate function by performing a table-lookup operation at runtime. 

4.2.2  Exception Handling 

According to the Java Language Specification [3], 

“When a program violates the semantic constraints of the Java programming lan-

guage, the Java virtual machine signals this error to the program as an exception. 

An example of such a violation is an attempt to index outside the bounds of an 

array. Some programming languages and their implementations react to such 

errors by peremptorily terminating the program; other programming languages 

allow an implementation to react in an arbitrary or unpredictable way. Neither of 

these approaches is compatible with the design goals of the Java platform: to pro-
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vide portability and robustness. Instead, the Java programming language specifies 

that an exception will be thrown when semantic constraints are violated and will 

cause a non-local transfer of control from the point where the exception occurred 

to a point that can be specified by the programmer. An exception is said to be 

thrown from the point where it occurred and is said to be caught at the point to 

which control is transferred. Programs can also throw exceptions explicitly, using 

throw statements. 

Explicit use of throw statements provides an alternative to the old-fashioned 

style of handling error conditions by returning funny values, such as the integer 

value -1 where a negative value would not normally be expected. Experience 

shows that too often such funny values are ignored or not checked for by callers, 

leading to programs that are not robust, exhibit undesirable behavior, or both. 

Every exception is represented by an instance of the class Throwable or one of 

its subclasses; such an object can be used to carry information from the point at 

which an exception occurs to the handler that catches it. Handlers are established 

by catch clauses of try statements. During the process of throwing an excep-

tion, the Java virtual machine abruptly completes, one by one, any expressions, 

statements, method and constructor invocations, initializers, and field initialization 

expressions that have begun but not completed execution in the current thread. 

This process continues until a handler is found that indicates that it handles that 

particular exception by naming the class of the exception or a superclass of the 
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class of the exception. If no such handler is found, then the method uncaugh-

tException is invoked for the ThreadGroup that is the parent of the current 

thread-thus every effort is made to avoid letting an exception go unhandled.”

Exception handling in the JVM uses a program counter to keep track of the

point at which an exception was thrown. We emulate this by using a global excep-

tional program counter (epc). The epc is changed every time a trap (a range of

instructions corresponding to an exception) is entered or exited. 

We use the setjmp and longjmp routines to handle the non-local jumps and call-

stack unwinding associated with exception handling. When a function is entered,

the global jmpbuf and epc variables are stored to local variables and a setjmp call

is made. When an exception is thrown, longjmp is called to return control to this

setjmp instruction, and a table-lookup is done to find the point within the function

that catches the type of exception thrown. If the function does not catch the type of

exception thrown, the previous epc and jmpbuf are restored and the exception is re-

thrown to transfer control to the caller. 

4.2.3  Native Methods

Java requires certain native methods, which are methods implemented in plat-

form-dependent code, typically written in another programming language such as

C.
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This compiler allows the user to specify C code for the body of any native

method. At compile-time, this is integrated with the generated C code, allowing

any C native methods to be fully supported. We created a short C file for the body

of each required native method.

4.2.4  User-Defined Code

All standard Java library classes have a predefined behaviour that cannot be

easily modified by the user. This may be too restrictive for embedded systems

designers, since it precludes hand-optimization of critical code, or easy use of spe-

cialized I/O. We relax this restriction by allowing the user to define the C code for

the body of any method, not merely native methods. 

This allows easy adaptation of standard Java classes to embedded-system-spe-

cific uses. For example, the code for the method Print-

Stream.print(boolean)can be defined to turn an LED on the embedded

board on or off, while printing “true” or “false” to a screen on a desktop. This

allows a developer to specify platform-specific or optimized code for any method.

4.2.5  Garbage Collection

One of the key features of Java is its heap is automatically garbage-collected.

Dynamically allocated memory that is no longer referenced is freed automatically.

The JVM's heap stores all objects created by an executing Java program. Objects
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are created by Java’s "new" operator, and heap memory for new objects is allocated

at run time. Garbage collection is the process of automatically freeing objects that

are no longer referenced by the program. Objects that are no longer in use are

destroyed and memory freed up without any explicit programming directive (by

contrast, C requires memory allocated with malloc() to be explicitly de-allocated

with free()).

A garbage collector may also combat heap fragmentation, which occurs during

normal program execution. When referenced objects are freed and new objects are

allocated, free blocks of heap memory may be left in between blocks occupied by

live objects. New allocations may have to be serviced by increasing the heap size,

although enough total unused space is available in the existing heap. This will hap-

pen if the size of the allocated object exceeds the size of the largest contiguous

block of free heap memory. On virtual memory systems, the extra paging required

to service increasing heap sizes can cause performance degradation. On memory-

poor embedded systems, such fragmentation can leave the system out of memory.

The JVM specification [4] specifies that the heap of the Java virtual machine

must be garbage collected. It does not define how the garbage collector must work.

The designer of each JVM must decide how to implement the garbage-collected

heap. 
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Our implementation uses the publicly available Boehm-Demers-Weiser con-

servative garbage collector [20][21]. A conservative collector checks every regis-

ter and all allocated memory for potential pointers, and traces the transitive closure

of all memory reachable from these pointers. It does not require type information

for managed memory, and thus memory management is transparent to the pro-

grammer.

4.2.6  Start-up

The Java virtual machine starts execution by invoking the method main of

some specified class and passing it a single argument, which is an array of strings

(usually the command-line arguments). This causes the specified class to be

loaded, linked to other types that it uses, and initialized.

Our approach uses a static executable created from C code, so dynamic load-

ing/linking is not involved. However, the main C function takes command-line

arguments in a manner very different from the way the main Java method takes

arguments. The start-up steps in the generated C main function are:

1. Set up the class structures for all required classes.

2. Call the java.lang.System.initializeSystemClass() method. In 

a standard implementation, this would be implicitly called by the JVM.

3. Parse the command-line arguments (using the argc and argv C constructs) 

into the C equivalent of an array of Java strings.
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4. Invoke the method corresponding to the Java main method, and pass it this 

array of strings as an argument.

This makes the Java application aware of all comand-line arguments, and per-

forms the initializations that allow it to execute correctly.

4.3  Code Pruning Strategy

Java classes tend to derive a lot of functionality from other Java classes, in a

highly interlinked manner. The simplest Java class can require over 250 other

classes for execution3. 

All Java classes are subclasses of java.lang.Object. In addition, classes

reference fields and methods in other classes, throw exceptions (all exceptions are

Java classes) and have local variables that may be objects belonging to other

classes. C code needs to be generated for all classes, methods and fields that may

be accessed.

Simply translating all classes that are referenced by the main class into C fails.

This is because each of these classes will have methods or fields that are not used

by the main class. These unnecessary methods and fields can reference additional

classes, so all those classes will also need to be compiled unneccessarily.

3. This can be seen by running “java -verbose” on a standard “Hello World” program.
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A simple solution is to compile all Java library classes into a library and load

the required ones at runtime. This is the approach used by Toba [14] and gcj

[13]. This simplifies compilation and linking, but considerably increases code size

because the size of this library can be of the order of megabytes, and this may be

too costly to implement on embedded systems.

We make reductions in code size by analyzing all relevant files, and discarding

not only unnecessary classes, but also unneccessary methods and fields. This leads

to generation of highly optimized C code, which compiles into an executable with

a small footprint.

4.3.1  Analysis

We use the Soot framework to create a Method Call Graph of the application.

This is a graph with methods as the nodes, and calls from one method to another as

directed edges.

At first glance, it seems that the transitive closure4 of the main method should

represent all methods that can be called. However, this is not so, because the first

time the field or method of a class is referenced, its class initialization method

[3][4] is also invoked, and this can reference other methods or fields in turn.

4.  The transitive closure of G = (V,E) is a graph G+ = (V,E+) such that for all v,w in V there is an edge (v,w) in E+ if and 
only if there is a non-null path from v to w in G. In this case, the transitive closure of the main method refers to all meth-
ods which for which the call graph contains a path to them from the main method. 
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The method call graph contains an edge from each method to every possible

target of method calls in it. The number of such targets can be large for polymor-

phic method calls. A more sophisticated analysis can trim the method call graph by

removing some of the edges corresponding to polymorphic invocations.

We use Variable Type Analysis (VTA) [22][23][24] to perform this trimming of

the call graph. This analysis computes the possible runtime types of each variable

using a reaching type analysis, and uses this information to remove spurious edges.

The method call graph contains information about which methods can possibly

be called by each method. Information on required fields is obtained by analysis of

each method body.

4.3.2  Computing the Set of Required Entities

From the analysis mentioned above, the set of all possible required classes,

methods and fields (collectively grouped as entities) can be computed statically.

We use a set of rules to determine which classes are required. 

1. A set of compulsory entities is always required. This includes the Sys-

tem.initializeSystemClass() method, and all methods and fields of 

the java.lang.Object class.

2. The main method of the main class to be compiled is required.

3. If a method m is required, the following also become required: the class declar-

ing m, all methods that may possibly be called by m, all fields accessed in the 
29



body of m, the classes of all local variables and arguments of m, the classes cor-

responding to all exceptions that may be caught or thrown by m, and the method 

corresponding to m in all required subclasses of the class declaring m.

4. If a field f is required, the following also become required: the class declaring f, 

the class corresponding to the type of f if f is a reference type (not a primitive 

type) and the field corresponding to f in all required subclasses of the class 

declaring it.

5. If a class c is required, the following also become required: all superclasses of c, 

the class initialization method of c, and the instance initialization method of c.

Interfaces are treated as classes. A simple worklist-based algorithm can be

used to add to the set of required entities until no additional entities can be found

by application of these rules. Together, rules 3, 4 and 5 encapsulate all possible

dependencies and references between entities, making the set of required entities

self-contained.

4.3.3  Pruning and Code Generation

The algorithm described above performs a form of interprocedural dead-code

elimination. The Code Generator generates code only for required entities. Not

only does this remove classes that are never used, but also methods that are never

called and fields that are never referenced. The code size reduction thus achieved
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leads to executables with code footprints within the levels acceptable for embed-

ded systems.

4.3.4  Compilation Time

In the pruning algorithm, all methods called by a given method in the call

graph are needed. We observed that setting up the call graph and computing all tar-

gets of a given method is the most computation-intensive part of the algorithm. It

took an average of 150 seconds5 to perform this computation. The total code gen-

eration time was then ~156 seconds.

We reduced this overhead by computing a full call graph for all Java library

classes, and storing a disk file called the invoke cache containing the names of the

targets of each method in these classes. Since all classes here are standard Java

library classes, the information in this file changes only with the Java version num-

ber (currently 1.4.1). This process takes 150 seconds.

At the time of compilation, a partial call graph is set up, consisting only of

methods in classes that are not Java library classes. Methods of Java library classes

are treated as terminal nodes in this graph, since their targets are already known

from the invoke cache. The methods called by a non-library method are its targets

5. All times were measured on a 1.5GHz Intel Pentium 4 workstation with 1GB RAM running 
Windows 2000.
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in the call graph, and the methods called by a library method are its targets read

from the invoke cache.

The invoke cache is stored once and loaded every time the compiler is called.

Since it does not have to be re-computed each time, it significantly lowers the

code-generation time. The code generation time we measured with the invoke

cache enabled is 6-8 seconds for each program.
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5. Limitations

In a C-based compilation strategy, most (but not all) Java features can be

implemented as-is, with little deviation from the behavior described in the Java

Language Specifications [3]. This section describes Java features that we found to

be difficult or inelegant to implement in our C-based, static Java compilation

framework.

5.1  Dynamic Loading

Loading, as defined in the Java Language Specification [3], refers to the pro-

cess of finding the binary form of a class or interface type with a particular name,

perhaps by computing it on the fly, but more typically by retrieving a binary repre-

sentation previously computed from source code by a compiler, and constructing,

from that binary form, a Class object to represent the class or interface.

Linking is the process of taking a binary form of a class or interface type and

combining it into the runtime state of the Java virtual machine, so that it can be

executed. A class or interface type is always loaded before it is linked.

Modern Operating Systems, such as Solaris, Linux, AIX and all recent win-

dows versions, support dynamic loading. They allow executables to link to librar-

ies which are loaded only at runtime. However, most embedded systems do not
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support such advanced features. In our design, we did not assume the presence of a

system capable of dynamic linking/loading, and thus this feature of Java cannot be

supported.

5.2  Reflection

Reflection (the java.lang.reflect package) is the ability to discover

information about the fields, methods and constructors of loaded classes and to

dynamically invoke them. Reflection is useful for very generic programs such as

database browsers, visual code editors or web components such as Java Beans.

However, reflection is not supported by C/C++, and hence our scheme does not

fully support it. C programs, ubiquitous in embedded systems today, do not utilize

reflection. Therefore, we do not consider this to be a major restriction.

5.3  Security

An executable generated with a C-based static compilation strategy will run as

a user task on the underlying platform. Therefore, applications that rely on a JVM

as a buffer between them and the platform for security cannot be guaranteed to run

correctly.

Also, the compiler assumes that the Java bytecode provided to it as input is

correct. It does not include a bytecode verifier.
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5.4  Threads

A thread is a single sequential flow of control within a program. Java allows

programs to be have multiple threads. An underlying platform-dependant native

thread library facilitates threads and is often provided through system calls. 

Our current implementation does not support threads, since thread libraries are

platform dependant and we favored portability while making design decisions.

Future releases may support threads and care has been taken to avoid program-

ming that would preclude multithreading in future versions. There are no theoreti-

cal reasons why Java threads cannot be implemented in a C-based compilation

framework6, and the main issue issue to mapping Java thread operations to opera-

tions on the underlying native threads. Java-to-C compilers such as Toba [14] have

successfully implemented Java threads on a Solaris platform.

5.5  Portability

The generated C code may not be fully portable, even if it is strictly ANSI-com-

pliant C. This occurs when different platforms implement various functions 

slightly differently, have library files in different locations, or have different C 

compilers. In our experience, retargetability was not particularly challenging, 

because the compiler framework can easily generate different C code depending 

6. JVMs frequently use native thread libraries directly.
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on the platform. A small number of code generation rules translated into differ-

ences in C code at a large number of sites. So while porting the generated C code 

by hand would have been challenging, it is extremely straightforward when code 

generation is automated.

In addition, some native or user-defined methods may need to be modified for a 

new target. This is also true for the garbage collection library. This needs to be 

done in any Java implementation, so our strategy does not sem to have any addi-

tional portability considerations.
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6. Performance Studies

6.1  Benchmarks

To measure floating-point and arithmetic performance, we used the Java ver-

sion of the Linpack benchmark. Linpack is a collection of subroutines that analyze

and solve linear equations and linear least-squares problems. The benchmark

solves a dense 500 x 500 system of linear equations with one right-hand side, Ax =

b. The matrix is generated randomly and the right-hand side is constructed so the

solution has all components equal to one. The method of solution is based on

Gaussian elimination with partial pivoting. The benchmark score is a number

indicative of the speed at which the system can execute floating point operations.

The Embedded CaffeineMark7 benchmark suite uses 6 tests to measure various

aspects of Java performance. The score for each test is a number proportional to

the number of times the test was executed divided by the execution time.

The following is a brief description of what each CaffeineMark test does: 

• Sieve: The classic sieve of Eratosthenes finds prime numbers. 

7. Pendragon Software’s CaffeineMark(tm) ver. 3.0 was used. The test was performed without 
independent verification by Pendragon Software and Pendragon Software makes no representa-
tions or warranties as to the result of the test. CaffeineMark is a trademark of Pendragon Soft-
ware.
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• Loop: Uses sorting and sequence generation to measure compiler optimization 

of loops. 

• Logic: Tests the speed with which the virtual machine executes decision-mak-

ing instructions. 

• Method: Executes recursive function calls to see how well the VM handles 

method calls. 

• String: Performs basic string manipulations.

• Float: Simulates a 3D rotation of objects around a point. 

In addition to these, we also estimate code size by compiling additional pro-

grams that perform extensive tests of specific functionality (HashSets, LinkedLists

etc.).

6.2  Methodology

We obtained the benchmark scores for interpreted Java by using Sun standard

JVM with the -Xint flag. Sun Microsystems’ JVM (with default flags) was used

as an example of a JIT-enabled Virtual Machine. GNU gcj was used as an example

of a standard Java-to-native-code compiler. gcj was used with the flags -fno-

bounds-check -fno-store-check -static -s -O2. These options

gave both the smallest and the fastest static native code. Turning on additional

optimization (upto -O99) did not lead to a significant impact on either perfor-

mance or code size. The C code generated by the Java-to-C compiler was compiled

with gcc using the flags -O2 -static -static-libgcc -s -Wall -
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pedantic, with bounds-checking turned off. These flags ensure ANSI C compli-

ance, perform only basic optimizations and generate a static executable.

The tests were performed on a 1.5GHz Pentium 4 running Cygwin on Win-

dows 2000, since this was a platform which allowed us to run the Java Virtual

Machine, gcj, gcc, and the Java-to-C compiler. All benchmark scores shown are

the average of 20 runs. 

The Java-to-C compiler is highly retargetable. C code generation has been

extensively tested for Cygwin on a Windows platform, a Sparc Ultra 5 running

Solaris 5.7, and a TMSC320C6711 DSP platform. The latter is an 8-way VLIW,

floating-point DSP running at 200MHz. It provides an example of a target embed-

ded system on which it has not been possible to run Java code so far, but on which

we were able to run Java applications using a Java-to-C compilation strategy. The

DSP’s C compiler serves as the back end for compilation of C code to native code.

Generated code ran correctly on the system, and we are now working on porting

the garbage collection library to the platform.

6.3  Results

6.3.1  Performance

The performance of various benchmarks across a number of possible execution

strategies is shown in [1] 
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We compare the performance of a JVM running interpreted Java (no JIT), Java

on a JIT-enabled JVM, Java-to-native-code conversion with the gcj front-end to

the GNU compiler suite, and of using C as intermediate language for final compi-

lation to native code.

We see that interpreted Java runs an order of magnitude slower than any other

strategy. This is because a JVM that is running Java without JIT compilation incurs

a recurring overhead of converting bytecode to machine code. This overhead is

reduced by JVMs using a Just-In-Time compilation strategy, in which machine

code for a method is generated from its bytecode when the method is invoked for

the first time. gcj performs faster than JIT-compiled Java (slower on String and

Sieve, but faster on the other benchmarks). The Java-to-C compilation strategy

performs the fastest on all benchmarks except String. This can readily be remedied

by providing user-defined code for common string operations, but we omitted such

hand-optimization because that would no longer provide a useful comparison.
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6.3.2  Code Size

Java class files are remarkably compact compared to executables. This is

because a bytecode instruction is only 1 byte long, whereas a machine instruction

can be 2-8 bytes long, depending upon the word size. Typical class files are smaller

than a few kilobytes in size. However, a class file requires a JVM and a class

TABLE 4. Percentage improvement in performance of Java-to-C strategy over any other 
approach. The table shows the amount by which the performance improvement of a Java-
to-C implementation over the highest-performing of the other strategies.

% improvement in performance over next-best strategy

Linpack 1.73% (over gcj)

Sieve 5.85% (over Java JIT)

Loop 4.35% (over gcj)

Logic 5.94% (over gcj)

String -57.1 (JIT scores higher than Java-to-C)

Float 64.84% (over gcj)

Method 2.2% (over gcj)
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Figure 1. Performance for various benchmarks.
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library in order to run. The virtual machine and the core Java classes alone total

around 20 megabytes on both Windows and Solaris. 

Extensively pared-down Virtual Machines and class libraries for embedded

systems can be much smaller. Sun Microsystems’ K Virtual Machine and Waba-

soft’s Waba both have Virtual machine and class library sizes that are around 100

kilobytes. However, these have very basic functionality, such as minimal library

classes and limited arithmetic support. Java is no longer as portable on these, and

applications need to be written with the target VM in mind.

It is interesting to compare these with the sizes of stand-alone executables gen-

erated with gcj and the Java-to-C compiler. Both of these enable much richer func-

tionality Java to be implemented.
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We see that gcj-generated executables are all around 1.3MB, regardless of the

application. This is because the lack of a pruning algorithm causes a very large part

of the library to be linked8. On the other hand, the Java-to-C approach generates

optimized and pruned C code for all required classes, effectively building a custom

library for each application. This accounts for the significantly lower code size of

TABLE 5. Sizes of generated executables for various applications. (Kilobytes)

gcj Java-to-C Ratio of code sizes

Linpack 1371 23 59.6

CaffeineMark 1378 60 23.0

LinkedListTest 1378 52 26.5

HashSetTest 1379 135 10.2

Average 27.3

8. The size of libgcj.a is 10MB.

Figure 2. Sizes of generated executables for various applications 
(Kilobytes).
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the order of 10-100 kilobytes, which is small enough for low-end embedded sys-

tems. 
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7. Conclusion and Future Work

7.1  Contributions

We have created a retargetable Java-to-C compilation framework that provides

performance comparable to a JIT-enabled JVM or a direct Java-to-native code

compiler. However, it uses an advanced code-pruning algorithm to generate exe-

cutables over 25 times smaller, on average, than those generated with a best-of-

class Java-to-native code compiler. This allows use of Java on resource-con-

strained systems. We also observed that such a C-based compilation strategy

imposes minimal restrictions in terms of Java functionality.

7.2  Future Work

There are a large number of optimizations that we have not yet applied to the

generated code. We intend to explore the impact of further optimizations, such as

static resolution of provably monomorphic references, and usage of data-flow

analysis in the pruning algorithm.

Preliminary studies comparing the performance of the generated C code with

hand-coded C code have been encouraging. We intend to measure the perfor-

mance/code size cost involved in writing programs in Java and generating C code,

as opposed to directly coding in C. It would also be interesting to perform perfor-
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mance/size characterizations of this framework using a class library specifically

targeted for embedded systems.
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9. Appendices

9.1  Example of Generated Code

Java code for a simple test class:

Corresponding C code:

/* Function that implements Method <PrintStreamTest: void 
main(java.lang.String[])> */
void f01840038560_main(iA1_i1195259493_String Lr0)
{
    /* Declarations for local variables. */
    i806420721_PrintStream L_r1;
    i1195259493_String Lr2;
    i1195259493_String Lr3;
    i806420721_PrintStream L_r4;
    i1195259493_String L_r5;
    i806420721_PrintStream L_r6;
    i806420721_PrintStream L_r7;
    i806420721_PrintStream L_r8;
    i806420721_PrintStream L_r9;

    /* Initializations for local variables. */
    L_r1 = NULL;
    Lr2 = NULL;

public class PrintStreamTest{

    public static void main(String[] args) {
        System.out.println(1); // print integer
        System.out.println(2.012); // print float

        String string = new String("Fear the Turtle!!!");
        System.out.println(string); // print string
        Object object = string;
        System.out.println(object); 

// print string cast as object.

        System.out.println(true); // print boolean
        System.out.println(false);
    }
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    Lr3 = NULL;
    L_r4 = NULL;
    L_r5 = NULL;
    L_r6 = NULL;
    L_r7 = NULL;
    L_r8 = NULL;
    L_r9 = NULL;

L_r1 = (i806420721_PrintStream)Vi1199917187_System.class-
vars.f0857384033_out;/* $r1 = java.lang.System.out */
 L_r1->class->meth-

ods.m01763166785_println((i806420721_PrintStream/* actual cast 
*/)L_r1, (long) 1);/* $r1.println(1) */
// Print integer.

L_r4 = (i806420721_PrintStream)Vi1199917187_System.class-
vars.f0857384033_out;/* $r4 = java.lang.System.out */
    L_r4->class->meth-
ods.m837144755_println((i806420721_PrintStream/* actual cast 
*/)L_r4, (double) ((double)2.012));/* $r4.println(2.012) */
// rint float

L_r5 = (i1195259493_String)( malloc(sizeof(struct 
i1195259493_String)));
    L_r5->class = &Vi1195259493_String;/* $r5 = new 
java.lang.String */
    L_r5->class->methods.m0914853318__init_((i1195259493_String/* 
actual cast */)L_r5, (i1195259493_String) charArrayToString("Fear 
the Turtle!!!"));/* specialinvoke $r5.<init>("Fear the Turtle!!!") 
*/
    Lr2 = (i1195259493_String)L_r5;/* r2 = $r5 */
    L_r6 = (i806420721_PrintStream)Vi1199917187_System.class-
vars.f0857384033_out;/* $r6 = java.lang.System.out */
    L_r6->class->meth-
ods.m193796831_println((i806420721_PrintStream/* actual cast 
*/)L_r6, (i1195259493_String) Lr2);/* $r6.println(r2) */
// Print String.

    Lr3 = (i1195259493_String)Lr2;/* r3 = r2 */
    L_r7 = (i806420721_PrintStream)Vi1199917187_System.class-
vars.f0857384033_out;/* $r7 = java.lang.System.out */
    L_r7->class->meth-
ods.m415907185_println((i806420721_PrintStream/* actual cast 
*/)L_r7, (i1063877011_Object) Lr3);/* $r7.println(r3) */
// Print String cast as Object.
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    L_r8 = (i806420721_PrintStream)Vi1199917187_System.class-
vars.f0857384033_out;/* $r8 = java.lang.System.out */
    L_r8->class->meth-
ods.m828280358_println((i806420721_PrintStream/* actual cast 
*/)L_r8, (short) 1);/* $r8.println(1) */
    L_r9 = (i806420721_PrintStream)Vi1199917187_System.class-
vars.f0857384033_out;/* $r9 = java.lang.System.out */
    L_r9->class->meth-
ods.m828280358_println((i806420721_PrintStream/* actual cast 
*/)L_r9, (short) 0);/* $r9.println(0) */
// Print boolean.
    
    return ;/* return */
} /* Function that implements Method <PrintStreamTest: void 
main(java.lang.String[])> */
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